TURBULENT MIXING OF FLUIDS WITH DIFFERENT
DENSITIES FLOWING THROUGH A PIPE

V. [. Maron UDC 532.529.2

A one-dimensional model of a disperse mixture in a turbulent stream is constructed, with
the mutual effect of mixture concentration and turbulence intensity taken into account,

We consider the mixing of mutually soluble fluids with different densities when one flows behind the
other or when part.of one fluid spreads in a stream of the other in a circular pipe.

In a stream with a fully developed turbulence, where the mixing rate is high, a separation of the com-
ponents from the mixture in a gravity field will be only slight. For this reason, the average flow through
a circular pipe will be assumed axially symmetric, regardless of whether the pipe is horizontal or in-
clined, The mixing of fluids will be considered at the instant of time when the concentration has become
almost uniform across a pipe section, as a result of radial diffusion, and the deviations from the mean-
over-the-section concentration are only slight, These deviations are due to a convective transfer of the
solute, as a consequence of a nonuniform velocity profile, At instants of time determined by the diffusivity
t, = dZ/D0 (d denoting the pipe diameter,D; denoting the characteristic value of radial turbulent diffusivity),
the mixing zone is far wider than the pipe diameter and the average flow can be considered almost linear
and parallel to the pipe axis,

We introduce a eylindrical system of coordinates whose axis coincides with the pipe axis in the direc-
tion of flow. In accordance with the conventional flow model, the system of equations describing a tur-
bulent flow of an inhomogeneous fluid is
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In deriving the first equation here, we have replaced the average density by the mean-over-the-section
density, on the assumption that the radial density and concentration nonuniformities are small.

We assume a constant flow rate and, accordingly, the continuity equation in (1) will yield a constant
mean velocity.

As was done in [2], we will derive an equation which describes the distribution of the mean solute
concentration. This equation is
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The effective turbulent diffusivity K is calculated by the following formula [3]:
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From the equation of motion in system (1) we derive
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The rates of mass and momentum transfer in a turbulent flow are almost equal and, therefore, the
coefficients Vi and D¢, which characterize the respective transfer rates in the mainstream, can be assumed
equal, With this stipulation and with equality (4), expression (3) becomes
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Expression (5) contains only one unknown quantity, namely the axial component of the average veloc-
ity, which is needed for calculating the coefficient K.

In [2, 4-8], where the mixing of mutually soluble fluids has been analyzed theoretically, the effective
diffusivity was calculated on the basis of a velocity profile hypothetically the same as in a homogeneous
stream, The solute was, furthermore, assumed "passive,” i.e., the presence of one fluid in the stream
of another was assumed to have no effect on the turbulent mass and momentum transfer processes., On the
basis of such an assumption, one arrives at a homogeneous model of a dispersion with constant diffusivity,

It is entirely valid to assume a "passive® solute when the densities of both fluids are equal. If the
densities are not equal but different, however, then within the mixing zone the flow parameters will be
different than in the homogeneous regions, For instance, the turbulence intensity in the mixing zone is
not the same as in the homogeneous regions and depends on the density as well as the concentration dis-~
tribution, Moreover, this dependence is reciprocal: the turbulence intensity, in turn, determines the
mixing characteristics and, therefore, the distribution of substance in an inhomogeneous stream. A sim-
ilar relation has been established in [1] for a stream carrying solid particles near a wall.

Turbulent mixing at the boundary between liguids or gases has been analyzed in [9] and the following
hypothesis was proposed: the energy dissipated by turbulent mixing of fluids in an inhomogeneous stream
is equal to the energy dissipated by turbulence. This hypothesis will be used here for deriving the equa-
tion of balance of turbulence energy in the mainstream in a pipe, on the basis of which the transfer coef-
ficients will then be determined and the velocity profile in the mixing zone will be found. Coefficient K can
be calculated from this velocity profile; at the same time, the dispersion model obtained in this manner
will be more general than the Taylor model with the effective coefficient depending on the concentration
profile,

The equation of balance of turbulence energy in the homogeneous mainstream in a pipe, except for
the region where appreciable energy transfer by diffusion occurs near the axis, is on the basis of mea-
surements made by Laufer [10}]:
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In this equation the left-hand side represents dissipation of turbulence energy, the right-hand side
represents dissipation of flow energy due to turbulence friction, For a flow of an inhomogeneous fluid,
according to the hypothesis proposed in [9], to the right-hand side of Eq. (6) must be added another term
which will account for the dissipation of flow energy due to turbulent mixing. The dissipation of flow en-
ergy due to turbulent mixing alone is [9]
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Well known thermodynamic relations yield the following chain of egualities:
'ﬂ) I A T TN _f’e.)
(ap c_(?fc o /o 92(661{
Quantity (7) expressed in terms of both this equatity and formula
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will be added on the right-hand side of Eq. (6). As a result, we have an equation of balance of turbulence
energy in the mainstream of an inhomogeneous fluid through a pipe:
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The transfer coefficients y; and Dy in the Kolmogorov hypothesis, like the dissipation of turbulence
energy, are defined in terms of the turbulence intensity b and a linear scale factor . Dimensional analysis

yields

v,=1Vb, D,=1Vb. ©)

With the aid of these equalities and the balance equation (8), we determine the turbulent viscosity as fol-
lows:
1
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Here the average concentration has been replaced by the mean concentration, because at the given instants
of time the concentration is nearly uniform along the radius.

Knowing the turbulent viscosity, one can determine the velocity profile in the mixing zone, In order
to do this, we use the two-layer model of a stream through a pipe: a laminar layer at the inside surface of
the pipe and a turbulent mainstream. The velocity profile in the laminar layer will be assumed linear and
its thickness y+ = 11.5v/u,. In the turbulent mainstream the frictional stress will be assumed constant
and equal to 7,. All further estimates will be based on this stream model, which, on account of the quasi-
equality T = T, applies more to the boundary-layer velocity than to the overall velocity profile in the pipe.
Nevertheless, we will assume that, as in the case of a homogeneous stream,; the velocity profile obtained
with all those stipulations approximates the velocity distribution throughout the entire flow region till close
to the pipe axis. In accordance with the stipulated stream model, the equations for determining the veloc-
ity can be written as
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With the aid of Eq. (10), the second equation in (11) can be transformed into
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The vl-group will be defined by the Karman formula
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For the given flow model, the turbulence intensity in the mixing zone is not much different from that in the
homogeneous stream regions, For the boundary layer, consequently, where the frictional stress is con-
stant, the magnitude of the second term inside the brackets in (12) is much smaller than unity:
N
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With this estimate and with the Karman formula, we rewrite expression (12) as follows:
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Integrating this expression and using the estimate (14), we obtain
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The constants in this integration have been chosen so as to yield at f = 0 the universal law of velocity dis-

tribution for smooth pipes. With some error incurred by retaining only the first-power terms of the small
quantity f¥32, the velocity profile is
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The velocity profile in the mixing zcene (17) differs from the universal logarithmic profile by the additional
terms which account for the variation in flow intensity in this zone,

The pressure gradient found from the equation of motion (1) as well as the expression for ¥4 in (16)
are used for calculating the dimensionless parameter (1/6)[3\1112. After that, the velocity profile thus found
is inserted into expression (5) for calculating the effective turbulent diffusivity., Performing the integra-
tion, we obtain
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In deriving expression (18), we have retained the linear terms in ﬁ\I/f. The I'j-terms are close in magni-
tude to the coefficient K, determined from the Taylor formula,

The effective diffusivity calculated by formula (18) is now inserted into the equation of one-dimen-
sional diffusion (2). The result is
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Unlike the Taylor equation, which is linear, this equation is only quasilinear. The value of effective dif-
fusivity depends here on the concentration distribution, If the densities of the mixing fluids are assumed
equal, then Eq. (19) will yield the Taylor equation. Thus, accounting for a density difference results in a
dispersion model where the effective diffusivity is a function not only of the Reynolds number but also of
the concentration gradient,

We will show a method of solving Eq. (19) for the case where one fluid displaces another, This prob-
lem has the following limit conditions:

(0, §) =0, c(r, —oo)=1, ¢,(zr, + o0} =0. (20)

In Eq. (19) we change to new variables 7 and z = g/(zrmi/?. The solution to the equation in these
variables is sought in the form of a series:
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Functions fy(z), f;(z), ..., which are the coefficients of this series, satisfy the following ordinary differen-
tial equations: '
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The limit conditions for determining function f(z) are

fol—o0)=1, f[i(+o0)=0. (23)

Inasmuch as functions f, .4(z) (@ = 0, 1, 2, ...) are odd, f544(0) = 0. It is not difficult to show that at
point z = 0 the derivative of a function f, ,(z) becomes zero. Therefore, we solve the Cauchy problem
with zero limit conditions

fn+1(0):f;l+l(0)=0, n=20,1,2 ... (24)

for determining the functions f, ;4(z). The solution fy(z) is identical to the Taylor solution, namely

£ (@) = %(1— l/%fexp(_—’;i) dx). (25)

The solution to the subsequent nonhomogeneous equations for functions fh+1(z) can be found by the applica-
tion of well known rules with the aid of fundamental solutions to homogeneous equations. The fundamental
solutions are
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For example, the solution for function f,(z) is
4
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NOTATION
Po is the mean-over-the-section density;
P is the pressure;
vt is the turbulent viscosity;
U is the average longitudinal velocity;
g is the acceleration of gravity;
w is the angle of pipe inclination from the horlzontal
X, T are the cylindrical coordinates;
t is the time;
A% is the average radial velocity;
C is the average concentration;
Dy is the turbulent diffusivity;
Cy is the mean-over-the-section concentration;

is the effective turbulent diffusivity;
is the mean flow velocity;
is the distance, in the moving system of coordinates;
is the pipe radius;
is the frictional stress at the inside surface of the pipe;
is the transient turbulent velocity;
is the turbulence intensity;
is the linear scale factor;
is the chemical potential of mixture;
is the density of mixture;
d, are the densities of homogeneous fluids;
is the thickness of laminar layer;
is the distance from the inside pipe surface;
is the derivative of velocity at the layer boundary on the turbulent side;
is the hydraulic drag;

oo ® ~ T
R S Xaw

Gr is the Grashof number;

Re is the Reynolds number;

I, I, A are the coefficients in the equation for Ky
K, is the dimensionless effective diffusivity;
T=Upt/a  is the dimensionless time;

£=X/2a is the dimensionless distance.
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