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A one-dimensional  model of a d i sperse  mix tu re  in a turbulent s t r eam is constructed,  with 
the mutual effect of mixture concentrat ion and turbulence intensity taken into account. 

We consider  the mixing of mutually soluble fluids with different densit ies when one flows behind the 
other or  when par t  of one fluid spreads  in a s t r eam of the other in a c i r cu la r  pipe. 

In a s t r eam with a fully developed turbulence, where the mixing rate  is high, a separation of the c o m -  
ponents f rom the mixture in a gravi ty  field will be only slight. Fo r  this reason,  the average flow through 
a c i r cu la r  pipe will be assumed axially symmetr ic ,  r ega rd less  of whether the pipe is horizontal  or  in- 
clined. The mixing of fluids will be considered at the instant of time when the concentration has become 
almost  uniform ac ross  a pipe section, as a resul t  of radial  diffusion, and the deviations f rom the mean- 
over - the - sec t ion  concentrat ion are  only slight. These deviations are due to a convective t ransfer  of the 
solute, as a consequence of a nonuniform velocity profile.  At instants of t ime determined by the diffusivity 
t .  = d2/D0 (d denoting the pipe diameter,  D 0 denoting the charac te r i s t i c  value of radial turbulent diffusivity), 
the mixing zone is far  wider than the pipe d iameter  and the average flow can be considered almost  l inear 
and parallel  to the pipe axis. 

We introduce a cyl indr ical  sys t em of coordinates  whose axis coincides with the pipe axis in the d i rec -  
tion of flow. In accordance with the conventional flow model, the sys tem of equations describing a tur -  
bulent flow of an inhomogeneous fluid is 
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In deriving the f i rs t  equation here,  we have replaced the average density by the mean-ove r - the - sec t ion  
density, on the assumption that the radial  density and concentrat ion nonuniformities are s m a l l  

We assume a constant  flow rate and, accordingly,  the continuity equation in (1) wilt yield a constant 

mean velocity. 

As was done in [2], we will derive an equation which descr ibes  the distribution of the mean solute 

concentrat ion.  This equation is 
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The effective turbulent diffusivity K is calculated by the following formula  [3]: 
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F r o m  the equation of motion in s y s t e m  (1) we de r ive  

r OU % - p , , v , ~  - -  ( 4 )  
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The r a t e s  of m a s s  and momentum t r a n s f e r  in a turbulent  flow are  a lmos t  equal and, the re fo re ,  the 
coeff ic ients  v t and Dr, which c h a r a c t e r i z e  the r e s p e c t i v e  t r a n s f e r  r a t e s  in the m a i n s t r e a m ,  can be assumed  
equal. With this  s t ipula t ion  and with equal i ty  (4), e xp r e s s i on  (3) be c om e s  
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E x p r e s s i o n  (5) contains  only one unknown quantity,  namely  the axial  eomponent  of the ave rage  ve loc -  
ity, which is needed for  ca lcu la t ing  the coeff ic ient  K. 

In [2, 4-8], where  the mixing of mutual ly  soluble f luids has been analyzed theore t i ea t ly ,  the effective 
di f fus ivi ty  was ca lcu la ted  on the b a s i s  of a ve loe t ty  prof i le  hypothe t ica l ly  the same  as in a homogeneous 
s t r e a m .  The solute was,  f u r t h e r m o r e ,  a ssumed  " p a s s i v e , "  i. e . ,  the p r e s e n e e  of one fluid in the s t r e a m  
of another  was a s sumed  to have no effect on the turbulent  mass  and momentum t r a n s f e r  p r o c e s s e s .  On the 
b a s i s  of sueh an assumpt ion ,  one a r r i v e s  at a homogeneous model  of a d i s pe r s i on  with constant  diffusivi ty .  

It is  en t i r e ly  val id  to assume a "pass ive"  solute when the dens i t i e s  of both f luids a re  equal, if the 
dens i t i e s  a re  not equal but d i f ferent ,  however ,  then within the mixing zone the flow p a r a m e t e r s  wil l  be 
d i f fe ren t  than in the homogeneous reg ions .  F o r  instanee,  the turbulence  in tens i ty  in the mixing zone is 
not the same as in the homogeneous reg ions  and depends on the dens i ty  as well  as the eoneent ra t ton  d i s -  
t r ibut ion.  Moreover ,  this  dependence is r e e t p r o e a l :  the turbulenee  intensi ty,  in turn,  d e t e r m i n e s  the 
mixing c h a r a c t e r i s t i c s  and, t he re fo re ,  the d i s t r ibu t ion  of subs tance  in an inhomogeneous s t r e a m .  A s i re -  
t lar  r e l a t ion  has been e s t ab l i shed  in [1] for  a s t r e a m  c a r r y i n g  solid p a r t i c l e s  near  a wai l .  

Turbulen'~ mixing at the boundary between l iquids or  gases:  has been analyzed in [9] and the following 
hypothes is  was  p roposed :  the energy  d i s s i pa t e d  by turbulent  mixing of f luids in an inhomogeneous s t r e a m  
is equal to the energy  d i s s ipa t ed  by turbulence.  This  hypothes is  wi l l  be used here  for  de r iv ing  the equa-  
lion of ba lance  of tu rbulence  energy  in the m a i n s t r e a m  in a pipe,  on the basks of which the t r a n s f e r  coef -  
f ic ten ts  wi l l  then be de t e rmined  and the ve loc i ty  prof i le  tn the mixing zone wil l  be found. Coefficier~t K can 
be ea leu la ted  f rom this ve loe i ty  prof i le ;  at the same  t ime,  the d i s pe r s i on  model obtained in this  manner  
wi l l  be more  genera[  than the Taylo r model  with the effect ive coeff ic ient  depending on the concent ra t ion  
prof i le .  

The equation of ba lanee  of turbu[enee ene rgy  in the homogeneous m a i n s t r e a m  in a pipe,  except  for  
the region where  app rec i ab l e  energy  t r a n s f e r  by diffusion occur s  nea r  the axis,  is on the b a s i s  of mea -  
s u r e m e n t s  made by Laufer  [10]: 
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In this  equation the lef t -hand side r e p r e s e , t s  d i s s ipa t ion  of turbulence  energy,  the r igh t -hand  s ide  
r e p r e s e n t s  d i s s ipa t ion  of flow energy  due to turbulence  f r ie t ion .  F o r  a flow of an inhomogeneous fluid, 
aeeord ing  to the hyppthes is  p roposed  in [9], to t~e r igh t -hand  side of Eq. (6) must  be added another  t e r m  
whieh wil l  account fo r  the d i s s ipa t ion  of flow energy  due to turbulent  mixing. The d i s s ipa t ion  of flow en-  
e rgy  due to turbulent  mixing alone is [9] 

pD, C{ 0 
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Well  known the rmodynamic  r e l a t i ons  yie ld  the following chain of equa l i t i e s :  
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Quantity (7) e x p r e s s e d  in t e r m s  of both this equai i ty  and fo rmula  
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will  be  added on the r i gh t -hand  side of Eq. (6). As a resu l t ,  we have an equat ion of ba lance  of tu rbu lence  
ene rgy  in the m a i n s t r e a m  of an inhomogeneous  fluid through a pipe:  

b s/~ ( OU 12 aD, Op OC d 1 --d~ 
y't "=vtk- ~-1 --" dl ax Ox ' a =  ~ . (8) 

The t r a n s f e r  coe f f i c i en t s  v t and D t in the K o l m o g o r o v  hypothes i s ,  like the d i ss ipa t ion  of tu rbu lence  
energy ,  a r e  defined in t e r m s  of the tu rbu lence  in tens i ty  b and a l i nea r  sca le  f a c t o r  l. D imens iona l  ana lys i s  
y ie lds  

v t = l ]fib-,, , n t = t V b -  (9) 

With the aid of these  equal i t ies  and the ba lance  equation (8), we deteacmine the tu rbulen t  v i s c o s i t y  as  fol-  
low s:  
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H e r e  the a v e r a g e  c o n c e n t r a t i o n  has  been r e p l a c e d  by the mean concen t r a t ion ,  because  at the given instants  
of t ime  the concen t r a t i on  is n e a r l y  un i fo rm along the rad ius .  

Knowing the tu rbulen t  v i s cos i ty ,  one can d e t e r m i n e  the ve loc i ty  p rof i l e  in the mixing zone.  In o r d e r  
to do this,  we  use  the t w o - l a y e r  mode[  of a s t r e a m  through a p ipe:  a l a m i n a r  l a y e r  at the ins ide s u r f a c e  of 
the pipe and a turbulent  m a i n s t r e a m .  The ve loc i ty  p ro f i l e  in the l a m i n a r  l a y e r  will  be a s s u m e d  l i nea r  and 
its t h i ckness  y+ = l l . 5 v / u . .  In the turbulent  m a i n s t r e a m  the f r i c t iona l  s t r e s s  wil l  be a s s u m e d  cons tan t  
and equal to T 0. All f u r t h e r  e s t i m a t e s  wil l  be based  on this s t r e a m  model ,  which,  on account  of the quas i -  
equal i ty  ~- = ~'0, appl ies  m o r e  to the b o u n d a r y - l a y e r  ve loc i ty  than to the ove ra l l  ve loc i ty  prof i le  in the pipe. 
N e v e r t h e l e s s ,  we will  a s s u m e  that, as in the case  of a homogeneous  s t r e a m ,  the ve loc i ty  prof i le  obtained 
with all those  s t ipu la t ions  a p p r o x i m a t e s  the ve loc i ty  d i s t r ibu t ion  throughout  the en t i re  flow reg ion  till c lose  
to the pipe axis .  In a c c o r d a n c e  with the s t ipula ted s t r e a m  model ,  the equat ions  for  de t e rmin ing  the v e l o c -  
ity can be wr i t t en  as  

2 OU 
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With the aid of Eq. (10), the second equation in (11) can be t r a n s f o r m e d  into 
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The Yl-group will  be defined by the K a r m a n  f o r m u l a  
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F o r  the given flow model ,  the tu rbu lence  in tens i ty  in the mixing zone is not much d i f fe ren t  f r o m  that  in the 
h o m o g e n e o u s  s t r e a m  reg ions .  F o r  the bounda ry  l aye r ,  consequen t ly ,  where  the f r i c t iona l  s t r e s s  is con -  
s lant ,  the magni tude  of the second  t e r m  inside the b r a c k e t s  in (12) is much s m a l l e r  than unity:  

I-~-~ " OC~ "" oxOP ~-21 << 1. (14) 

With this e s t ima te  and with the K a r m a n  f o r m u l a ,  we r e w r i t e  e x p r e s s i o n  (12) as  fol lows:  

u, = - - ~ ( V 2 / ~ " ) ( 1 - - ~ V " ~ ) ,  ~ = ~ Oc o .~OP. (15) 
4dl Ox Ox 

In t eg ra t i ng  this  e x p r e s s i o n  and us ing  the e s t i m a t e  (14), we obtain 

[ • 1 -2 3 •  ] 1 [$W~9, U+ = l l.5u., W+ = u,2/ll.5zv. (16) g = g+ ~exp u.  (U - -  U+) - -  T [3W+ exp --u. (U - -  U+)_ + -~- 

The cons t an t s  in this in tegra t ion  have been chosen  so as to yield  at/3 = 0 the un ive r sa l  law of ve loc i ty  d i s -  
t r ibut ion for smoo th  pipes .  With s o m e  e r r o r  i n c u r r e d  by r e t a in ing  only the f i r s t - p o w e r  t e r m s  of the smal l  
quant i ty  fl~I,+ 2, the Velocity prof i le  is 
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The veloci ty  profi le  in the mixing zone (17) differs  f rom the universal  logari thmic profi le  by the additional 
t e rms  which account for  the var ia t ion in flow intensity in this zone. 

The p r e s s u r e  gradient  found f rom the equation of motion (1) as well as the express ion for ,I% in (16) 
are used for  calculating the d imensionless  p a r a m e t e r  (1/6)/3~+ 2. After that, the veloci ty  profi le  thus found 
ts inser ted  into express ion  (5) for  calculat ing the effective turbulent  diffusivity. Pe r fo rming  the in tegra-  
tion, we obtain 
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in deriving express ion  (18), we have retained the l inear  t e rms  in fi,I*+ ~. The r l - t e r m s  are c lose  in magni- 
tude to the coefficient  K ,  de termined  f rom the Tay lor  formula.  

The effective diffusivity calculated by formula  (18) is now inser ted into the equation of one-d imen-  
sional diffusion (2). The resu l t  is 
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Unlike the Tay lo r  equation, which is l inear,  this equation is only quasi t inear .  The value of effective dif- 
fusivi ty depends here  on the concentrat ion distribution.  If the densi t ies  of the mixing fluids are  assumed 
equal, then Eq. (19) will yield the Tay lor  equation. Thus, accounting for  a density di f ference resu l t s  in a 
dispers ion model where the effective diffusivity is a function not only of the Reynolds number  but also of 
the concentrat ion gradient.  

We wiit show a method of solving Eq. (19) for  the ease  where one fluid displaces another.  
tern has the following limit conditions: 

c o(0,  ~ ) = 0 ,  c 0 ( ~ , - - ~ o ) = l ,  c o(~, + o o ) = 0 .  

in Eq. (19) we change to new var iables  r and z = U(2Flr)I/2. The solution to the equation in these 
var iables  is sought in the fo rm of a se r i e s :  

2 '  Co (~, z) = io (z) - -  ~ ~ L (z). (21) 
S ~ i  

Functions f0(z), fl(z) . . . . .  which are the coeff icients  of this se r ies ,  sat isfy the following ord inary  d i f feren-  
tial equations : 

f0+#0  = 0, 

This prob-  

(20) 
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The l imi t  condi t ions  fo r  d e t e r m i n i n g  function f0(z) a re  

r 0 ( - - o o ) =  1, / 0 ( + o o ) = O .  (23) 

Ina smuch  as funct ions  fn+l(z) (n = O, 1, 2 . . . .  ) a r e  odd, fn+l(O) = O. It is not diff icul t  to show that at 
point  z = 0 the de r iva t ive  of a funct ion fn+t(z) b e c o m e s  z e r o .  T h e r e f o r e ,  we solve the Cauchy p r o b l e m  
with z e r o  l imit  condi t ions  

f~+~(0)=f~+, (0)=0 ,  n = 0 ,  1, 2 . . . .  (24) 

f o r  de t e rmin ing  the funct ions  fn+l(z) .  The solut ion f0(z) is ident ical  to the T a y l o r  solut ion,  n a m e l y  

g 

'( V t ) fo (z) = -~- 1 - -  -~-. (2s) T - " x~ ) dx 

0 

The solut ion to the subsequent  nonhomogeneous  equat ions  for  func t ions  fn+l(z) can be  found by the app l i ca -  
tion of well  known ru le s  with the aid of fundamenta l  so lu t ions  to homogeneous  equat ions .  The fundamenta l  
so lu t ions  a r e  

g 

Y l ( Z ) - -  dz n exp - -  , y ~ =  dz---- s  - -  exp x~2 dx. (26) 
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F o r  example ,  the solut ion fo r  function fl(z) is 
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N O T A T I O N  

is the m e a n - o v e r - t h e - s e c t i o n  densi ty;  
is the p r e s s u r e ;  
is the tu rbulen t  v i scos i ty ;  
is the a ve r a ge  longi tudinal  ve loc i ty ;  
is the a c c e l e r a t i o n  of g rav i ty ;  
is the angle of pipe incl inat ion f r o m  the hor izon ta l ;  
a r e  the c y l i n d r i c a l  coord ina tes ;  
is the t ime;  
is the a v e r a g e  r ad i a l  ve loc i ty ;  
ts the a v e r a g e  concen t ra t ion ;  
ts the tu rbulen t  diffusivi ty;  
is the m e a n - o v e r - t h e - s e c t i o n  concen t ra t ion ;  
is the e f fec t ive  tu rbulen t  diffusivi ty;  
ts the mean  flow ve loc i ty ;  
is the d i s t ance ,  in the moving s y s t e m  of coo rd ina t e s ;  
is the pipe rad ius ;  
ts the f r i c t iona l  s t r e s s  at the inside s u r f a c e  of the pipe; 
is the t r a n s i e n t  turbulent  ve loc i ty ;  
ts the tu rbu lence  intensi ty;  
is the l i nea r  sca le  fac tor ;  
ts the c h e m i c a l  potent ia l  of mix ture ;  
~s the dens i ty  of mix tu re ;  
a r e  the dens i t i e s  of homogeneous  fluids;  
is the th i ckness  of l a m i n a r  layer ;  
is the d i s t ance  f r o m  the inside pipe su r face ;  
is the de r iva t i ve  of ve loc i ty  at the l a y e r  bounda ry  on the tu rbulen t  side;  
is the hydrau l i c  drag;  
is the Grasho f  number ;  
is the Reynolds  number ;  
a r e  the coe f f i c i en t s  in the equat ion fo r  K. ;  
is the d i m e n s i o n l e s s  e f fec t ive  diffustvi ty;  
is the d i m e n s i o n l e s s  t ime;  
is the d i m e n s i o n l e s s  d i s t ance .  

(27) 
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